
Discretization and Simulation of the
Multi-layer Shallow Water Equations

Leon Montealegre∗

Figure 1: A frame from the simulation of a single
layer, flat bottom simulation with 2 initial drops

Abstract
In this paper, I will describe my implementation of simulating fluid
dynamics using the shallow water equations and simple central-
difference discretization techniques. The goal is to have a quick
and stable algorithm for the use of real-time applications.

Keywords: fluid simulation, shallow water equations

1 Introduction
The shallow water equations are a set of partial differential equa-
tions that describe the flow of a surface of a thin layer of fluid with
constant density and in hydrostatic balance, bounded below by a
set, rigid surface, and above by a free surface with negligible iner-
tia. Such a form can be generalized to multiple layers of immiscible
fluids lying atop of each other forming the ”Multi-Layer” shallow
water equations. The equations are derived from the Navier-Stokes
equations that make many simplifications to the full 3D fluid dy-
namics simulation that allows the equations to be much easier to
deal with and simulate. The main idealization is that the water is
assumed to be much greater in horizontal scale then vertical scale
(hence ”shallow”), which leads to the assumption that all vertical
motion is the same and so all z dependence of the Navier-Stokes
equations are gone.

This presumption restricts the ability for waves to crash over
themselves, meaning that you will never see the phenomena
of wave-crashing as seen near beaches, but instead is meant to
represent a patch of the water in the middle of the ocean with only
mild disturbances in the height.

2 Motivation
My main motivation for choosing these equations are the amount
of analytical work I have done with them previously that has
allowed me to have a pretty great understanding of these equations
and what they represent. I have loved fluid simulation for years
and have never been at the level of understanding of any of the
phenomena or methods until this semester. With the three very
connected classes that I have taken this semester (Introduction

∗e-mail:leonm99@gmail.com

Figure 2: A shallow water system. h(x, y) is the thickness of a
column,H is the mean thickness, η(x, y) is the height of the surface
and ηb(x, y) is the height of the bottom floor.

to Numerical Methods for Differential Equations, Introduction
to Geophysical Fluid Dynamics, and Computational Physics), I
have finally achieved a level of understanding that I thought I was
decades away from having.

3 Background
The shallow water equations for a single-layer are given below:

Du

Dt
+ f × u = −g∇η (1)

Dh

Dt
+ h∇ · u = 0 (2)

Where (1) is the momentum conservation equation with u being the
horizontal velocity vector u = (u, v), f being the Coriolis param-
eter which represents the Coriolis rotation of the system, g being
gravitational acceleration, and η representing the level of the sur-
face of the fluid (as seen in Fig. 2).

(2) represents the mass conservation equation with h(x, y) is the
thickness of a fluid column where h(x, y) = η(x, y)− ηb(x, y).

For both, D
Dt

is the so-called ”material derivative” and is equal to
∂
∂t

+ (u · ∇).

These equations can be extended for multiple layers and the forms

Figure 3: A multi-layer shallow water system. A fluid of density ρ1

lies over a denser fluid of density ρ2.

of those are given below:

Dun
Dt

+ f × un = − 1

ρn
∇pn (3)

Dhn
Dt

+ hn∇ · un = 0 (4)

where

pn =

n−1∑
i=0

(ρi+1 − ρi)ηi

ηn = ηb +

N∑
i=n+1

hi

n represents the nth layer of the system. Each system needs to be
solved in parallel with the rest.

4 Discretization
Discretization is the process of turning a continuous function
into its discrete counterparts which is necessary for numerical
computation with our digital systems. The process that will follow
allows us to trivially compute the answer to the shallow water
systems, with the cost of accuracy.

4.1 Grid
The first step for discretization is to define the grid that our system
will live on. Each dimension of the equation needs to be discretized,
so for our case, the horizontal space (x, y) and time, t. Mathemati-
cally, this means:

xi = i∆x, yj = j∆y, tn = n∆t

i = 0, ..., N ; j = 0, ...,M ; t = 0, ...,∞

Where ∆x = W
N
,∆y = H

M
and W,H are the world-space scales

of the system and N,M are the number of grid points in each di-
mension. ∆t can be chosen as a small constant.

Finally, we let

uni,j ' u(xi, yi, tn) vni,j ' v(xi, yi, tn)

hni,j ' h(xi, yi, tn) ηni,j ' η(xi, yi, tn)

Figure 4: Representation of a discretized 2D space with spacing of
∆x and ∆y

Figure 5: Visualizations of the 3 first-order finite difference formu-
las

4.2 Finite Difference Methods
The second step is to now discretize all of the operators acting in
our equations, specifically the derivative operators. This is done
through the process of finite difference methods. The 3 most com-
mon finite difference methods are shown in Figure 5.

With the example of the central difference formula, it is known that
the derivative operator (∂

∂x
u(xi, yj , tn)) can be expressed as:

u(xi + ∆x, yj , tn)− u(xi −∆x, yj , tn)

2∆x
+O(∆x2)

Which, using our compressed notation, and by throwing away the
error term, leads to

∂

∂x
u(xi, yj , tn) '

uni+1,j − uni−1,j

2∆x

We are now going to compress this further by defining the four
following finite difference operators:

δ+xu
n
i,j = uni+1,j − uni,j forward difference (5)

δ−xu
n
i,j = uni,j − uni−1,j backward difference (6)

δ0xu
n
i,j = uni+1,j − uni−1,j central difference (7)

δ2
xu

n
i,j = δ+xδ−xu

n
i,j 2nd order central difference (8)

While these are all being defined for completeness-sake, the only
one of use to us is the central difference finite difference operator
as the shallow water equations have no 2nd order derivatives.

This means that the derivative can be written as:

∂

∂x
u(xi, yj , tn) ' 1

2∆x
δ0xu

n
i,j

4.3 Application
Finally, we can take our discretization approach and apply it to each
of the shallow water equations. For simplicity-sake, we will take
f = 0.

4.3.1 Momentum Equation u(x, y, t) and v(x, y, t)

Du

Dt
= −g ∂η

∂x
⇒ ∂u

∂t
+ (u · ∇)u+ g

∂η

∂x
= 0

⇒ ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0

Now using our discretization and finite difference operators, we can
write this as:

δ0tu
n
i,j

2∆t
+ uni,j

δ0xu
n
i,j

2∆x
+ vni,j

δ0yu
n
i,j

2∆y
+ g

δ0xη
n
i,j

2∆x
= 0

Then, by multiplying both sides by 2∆t and expanding out the
δ0tu

n
i,j term, we get:

(un+1
i,j − u

n−1
i,j) + ∆t

(
uni,j

δ0xu
n
i,j

∆x
+ vni,j

δ0yu
n
i,j

∆y
+ g

δ0xη
n
i,j

∆x

)
= 0

Rearranging and isolating for un+1
i,j , we get:

un+1
i,j = un−1

i,j −∆t

(
uni,j

δ0xu
n
i,j

∆x
+ vni,j

δ0yu
n
i,j

∆y
+ g

δ0xη
n
i,j

∆x

)

This simple formula is very powerful; it’s an explicit formula for
the horizontal velocity u at a time n + 1, using previous times n
and n− 1. This means that provided with the state of the system at
n = 1, 2, we can solve for n = 3, which allows to solve for n = 4,
and so on. This formula can be iterated on forever and leads to a
reasonable approximation to our solution.

A very similar process can be performed for v(x, y, t).

4.3.2 Mass Equation h(x, y, t)

Dh

Dt
+ h∇ · u = 0⇒ ∂h

∂t
+ (u · ∇)h+ h∇ · u = 0

⇒ ∂u

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ h

∂u

∂x
+ h

∂v

∂y
= 0

Now using our discretization and finite difference operators, we can
write this as:

δ0th
n
i,j

2∆t
+ uni,j

δ0xh
n
i,j

2∆x
+ vni,j

δ0yh
n
i,j

2∆y
+ hni,j

δ0xu
n
i,j

2∆x
+ hni,j

δ0xv
n
i,j

2∆y
= 0

Then, by multiplying both sides by 2∆t and expanding out the
δ0th

n
i,j term, we get:

(hn+1
i,j − h

n−1
i,j)+

∆t

(
uni,j

δ0xh
n
i,j

∆x
+ vni,j

δ0yh
n
i,j

∆y
+ hni,j

δ0xu
n
i,j

∆x
+ hni,j

δ0xv
n
i,j

∆y

)
= 0

Rearranging and isolating for hn+1
i,j , we get:

hn+1
i,j = hn−1

i,j −

∆t

(
uni,j

δ0xh
n
i,j

∆x
+ vni,j

δ0yh
n
i,j

∆y
+ hni,j

δ0xu
n
i,j

∆x
+ hni,j

δ0xv
n
i,j

∆y

)

Similarly, this formula is now in explicit form and allows us to solve
for h at a given time.

Using this and the momentum formulas, along with the fact that
h(x, y) = η(x, y) − ηb(x, y), we can now solve this system of
PDEs.

I also performed this process for the multi-layer equations for the
final result.

5 Drawbacks
Since the shallow water equations are based off of energy and mass
conservation principles, it is given that all energy within the system
needs to be conserved. However, by discretizing the space, we’ve
introduced an inherent error into the solution. As a result, energy
conservation is violated. And for the case of our approximations,
the energy will tend to grow as t grows. Choosing a smaller value
for ∆t will slow this growth down, but will not stop it.

Using an implicit scheme or other, more complicated method would
help counter this problem, yet would be much harder to implement
and would slow the simulation down a lot as well.

An easier way to counteract this, is to add a damping term to the
shallow water equations that help remove energy from the system
and bring everything down to an equilibrium. This force is tacked
onto the momentum equations and is as follows:

Du

Dt
+ f × u = −g∇η − bu (9)

where b is a constant that represents the amount of drag in the sys-
tem (a higher value is more drag). Intuitively, this term represents
a force that acts in the direction opposite of the current velocity
and slows the velocity which effectively reduces the kinetic energy
of the system.

6 Algorithm
In this section I will outline the algorithm I use for the fluid simu-
lation along with explanations of important details.

Algorithm 1: Simulation Loop

foreach layer l do
set u = layers[l].u
set v = layers[i].v
set η = layers[i].η
set h = η − ηb
set p = calc pressure(l)
foreach u, v, η, h, p = uni,j , v

n
i,j , η

n
i,j , h

n
i,j , p

n
i,j do

u = u−∆t
(
u δ0xu

∆x
+ v δ0xu

∆y
+ 1

ρ
δ0xp
∆x

+ bu
)

v = v −∆t
(
u δ0xv

∆x
+ v δ0xv

∆y
+ 1

ρ
δ0xp
∆y

+ bv
)

h = h−∆t
(
u δ0xh

∆x
+ v

δ0yh

∆y
+ h

(
δ0xu
∆x

+ δ0xv
∆y

))
end
impose boundary conditions

end

7 Rendering
For my 2D scenarios, rendering is trivially done through GNUPlot.

For the 3D scenarios, rendering is done with OpenGL and GLFW.
The rendering for 3D was highly non-trivial and required many dif-
ferent aspects. The first challenge was procedurally generating an
N ×M plane.

From this, I created a displacement shader that takes in all the val-
ues for η as an attribute and displaces each vertex on the plane by
that amount. Along with this, after calculating all the values for
η, the normals for each vertex also had to be calculated which we
calculated by finding the plane through the 4 neighboring points for
each vertex. This allows nice shading to be acquired.

I performed the shading using a diffuse term, specular term for
the ”sun-reflection”, fake reflection from the sky, and height-based
coloring to mock how to the ocean appears darker as it’s lower.

8 Future Work + Discussion
Because the method of discretization that I used was fairly simple,
the program can be pretty trivially expanded for many similar
types of simulations with the shallow water equations. Specifically,
spherical coordinates would be a fairly reasonable extension
as the displacement shader could be easily moved to a sphere.
Accounting for Coriolis effects would also be quite trivial. The
addition of wind forces and other external forces would be a neat
addition. And finally, having a bottom floor that varies over time
would also be a great addition.

The simulation worked out pretty nicely, with the exception of
blowing up after a long period of time (which was fixed by adding
a damping term).

Another interesting edge case is when the initial conditions is a very

Figure 6: 2D simulation showing issues with large bumps that want
to crash over themselves and cause major instability.

tall and thin bump. This splits into to smaller bumps that want to
crash over themselves, yet are unable to since it’s unsupported and
causes major errors as shown in Figure 6

9 Code
The code can be found on my Github at https://github.
com/LeonMontealegre/ShallowWaterEquations.

References
VALLIS, G. K. 2005. Atmospheric and Oceanic Fluid Dynamics.

https://github.com/LeonMontealegre/ShallowWaterEquations
https://github.com/LeonMontealegre/ShallowWaterEquations

Figure 7: A visualization of the single-layer shallow water equations in 3D with a drop in the center and a flat bottom floor

Figure 8: A visualization of the single-layer shallow water equations in 2D with a drop in the center and a bumpy floor

Figure 9: A visualization of the multi-layer shallow water equations (w/ 3 layers) in 3D with 2 drop on the surface and a flat
bottom floor

(Videos + GIFs of the result can be found HERE: https://imgur.com/a/ADXYhsc)

https://imgur.com/a/ADXYhsc

